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Abstract
Recommender systems are increasingly being deployed into production use in various systems, 
such as online stores, social networks and video-sharing platforms. Modern recommender systems 
tend to use black-box, machine learning -based, techniques such as matrix factorization or deep 
learning which can significantly increase the accuracy of predictions while making the system’s 
behaviour hard to understand or explain.

This dissertation shows how the explainability of black-box recommender systems can be improved
by providing a generated explanation to recommendations. It includes a survey of current state-of-
the-art recommender systems and the attempts at making them explainable, as well as the 
implementation of a recommender system and two post-hoc explanation generators. The report then
describes an evaluation of the explanation generators through a user study, where 41 participants 
were asked to rate the persuasiveness and trustworthiness of film recommendations coupled with 
explanations of different classes. The user study found a statistically significant difference in both 
persuasiveness (p=0.008) and trust (p=0.001) between explanation types in favour of the association
rules explainer, while quantitative evaluation showed the explainer suffered from a low model 
fidelity, potentially adding a selection bias to the results. The report also proposes several exciting 
topics of further study, such as how the mined association rules can be used to analyse the 
behaviour of the recommender system as a whole.
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Overview
Recommender systems help users discover new items, and they have seen increased use in various 
applications including video streaming [2][20], e-commerce [2][4][10][17] and social media [18]. 
One of the main goals of recommender systems is to help users filter the large number of items 
available in most online platforms to just a handful [2], thus making it easier for users to find the 
items they like. Recommender systems usually aim to customise the recommendations to each user, 
as personalised recommendations tend to be more accurate than general ones [4]. Modern systems 
use machine learning to deliver highly accurate recommendations to each user, but tend to sacrifice 
interpretability: it’s often hard to understand or explain why a particular item was recommended to 
a user [1].

This dissertation aims to help deliver more understandable recommendations to users by improving 
the explainability of recommender systems. This is done through post-hoc explainability, which 
means creating a separate component (explainer) that generates an explanation to a recommendation
given by a black-box (i.e. uninterpretable) recommender system [1]. The key advantage of post-hoc 
explainability over other approaches is that it’s model-agnostic: the same explainer can generate 
explanations for all kinds of models and requires no domain-specific additional data to work [1].

This dissertation includes the implementation of a recommender system based on matrix 
factorisation [23] and two post-hoc explainers based on mined association rules and influences, 
respectively. Particular attention is paid to the problem of evaluating explainability in recommender 
systems. The context survey introduces seven criteria that systems can be evaluated against[21]: out
of them, the project focuses on trust and persuasiveness. The metric model fidelity for evaluating 
post-hoc explanation generators is also introduced, which describes the share of recommendations 
that can be made explainable [1].

The explanations were evaluated through a user study. 41 participants were asked to rate films 
they’ve seen before using a custom-built React.js [29] web application, after which they were 
presented with film recommendations with various types of explanations. The users were then asked
to rate how interested they’d be in watching the film and how much they trust the recommendation. 
These questions were set to measure the persuasiveness and trustworthiness of the explanations. As 
a result, a statistically significant difference in both persuasiveness (p=0.008) and trust (p=0.001) 
was measured between explanation types, and post-hoc tests showed the differences to be in favour 
of the association rules explainer. However, this explainer suffered from a drastically low model 
fidelity, limiting its usefulness in real systems and potentially distorting the experiment results by 
introducing a selection bias.

In the end, this dissertation shows how post-hoc explanations can be added to a realistic 
recommender system and how they can potentially improve the trust and persuasiveness of the 
system. The dissertation also highlights the importance of model fidelity as a metric for post-hoc 
explainers and the issues a low model fidelity can cause. Looking towards the future, the 
dissertation proposes a method to optimise model fidelity for association rules explainers by 
automatically selecting the best support and confidence bounds, and proposes a novel application of
association rules for analysing the behaviour of the recommender system as a whole. This is 
explored by mapping the recommender system as a graph, which could then be studied objectively 
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to discover new knowledge, for example whether the system suffers from the extreme content 
problem which the dissertation defines.

Context survey
This survey first presents a short overview of recommender systems in general, and a motivation for
why explainability should be considered when designing them. The survey then describes several 
approaches in making recommender systems explainable, and how explainable recommender 
systems have been evaluated by their authors. It also explores the uses of explainable recommender 
systems in real-world systems, paying attention to criticism unexplainable recommendations have 
received.

Recommender systems
Recommender systems help users discover new items in a system by providing suggestions of items
they might find useful. [2] In this context, “item” refers to what the system is recommending to 
users, and could be anything from movies and toothbrushes to profiles of other users. Recommender
systems are often most valuable in systems with a large number of items to choose from, as having 
too many choices can overwhelm users. [2][3] A good recommender system can therefore help limit
the number of items to choose from, from many to just a handful. While the items recommended by 
the recommender system can be the same for all users, the systems often aim to personalise 
recommendations to each user, as different users will be interested in different kinds of items. For 
example, Amazon.com has shown that targeting recommendations to each user vastly outperforms 
untargeted advertising, therefore boosting the company’s sales and revenue. [4]

Recommender systems can be built using several classes of techniques, but this project focuses on 
collaborative filtering (CF), which is one of the most commonly used techniques today. Most 
importantly, recommender systems using deep learning [35] will not be covered in this report. CF 
methods produce recommendations based on the users’ previous ratings with the theory that if users
A and B liked similar items in the past, it’s likely that A will also like other items rated highly by B 
[7][2]. Before CF, the most prevalent class of recommender system was content-based systems [22].
Content-based systems consider which items are most similar to the items previously liked by a user
based on content, for example categories and genres of items. For example, in a movie streaming 
site a user who has liked horror films in the past would be likely to be recommended other movies 
belonging to the horror category. CF-techniques have a few key advantages over content-based 
approaches. Firstly, CF works well even if the items can’t be easily categorised or labelled by their 
content, and it allows the system to recommend very different kinds of items, which may be a 
desirable property in a system. [6] CF has been considered the most popular technique for building 
a recommender system in the past few years [1].

CF systems don’t directly predict which items to recommend to a given user. Instead, they predict 
the rating a user would give to each item they haven’t yet rated, and then choose the top-n highest 
ratings as the recommended items. As such, the problem of generating recommendations can be 
expressed as a matrix completion problem, a well-known problem in mathematics [34]. Given a 
sparse matrix of ratings by users U on items I, can the unseen values of ratings be predicted 
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accurately? This problem, and one approach in solving it, is illustrated in Figure 1. In order to 
predict the ratings, the system needs to find a relation between two different classes of entities, 
users and items. This problem can be overcome by two main approaches: neighbourhood methods 
which focus on modelling relations inside an entity class (i.e. items with items, or users with users), 
and latent factor models which automatically learn a set of common factors by which users and 
items can be compared against each other. [7]

Neighbourhood methods are based on finding the k nearest neighbours of entities of the same class, 
and using them to predict the rating. In this way, only relationships between the same category of 
entities are modelled. Item-oriented models predict rating r by a user u for an item i by finding the k
nearest neighbours of i (i.e. items most similar to i), and taking a weighted average of the ratings u 
has given to them. In user-oriented models r is predicted by taking the k nearest neighbours of u 
(i.e. users most similar to u) and once again taking a weighted average of the ratings these users 
have given to i. Neighbourhood models are relatively simple and have seen widespread adoption in 
the past, but as they fail to take full advantage of the data their performance tends to be suboptimal. 
[7][23] 

Latent factor models (LFM) use machine learning in solving the problem of relating users and 
items. LFMs use the same set of factors to describe users and items, allowing their similarity to be 
compared easily. This means that the items most similar to a user can be found directly, unlike in 
neighbourhood models where only the most similar users can be found. The factors are 
automatically learned from the set of numeric ratings (called the training set of the model), and 
they describe the different dimensions the items and users can be described with. In the case of 
movies, one could envision the system learning dimensions such as scariness, movies one watches 
during Christmas, or films with strong female characters. Formally, this means LFMs map users and
items on a joint latent factor space of some dimensionality n, where each factor represents a 
dimension. [7][23] Figure 1 shows how the original ratings matrix is transformed into the matrices 
of user and item factors.

Figure 1: The transformation of a sparse ratings matrix R into factors matrices for users U and 
items VT. These matrices can be used to generate a complete predicted ratings matrix R̂̂. 
Reproduced from Figure 1, Peake, G., & Wang, J. (2018, July). Explanation mining: Post hoc 
interpretability of latent factor models for recommendation systems. In Proceedings of the 24th 
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ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2060-
2069). ACM.

Within the factor space, users and items are associated with a vector. For items, the vector’s values 
in each dimension rate how well the item is described by that factor, while for users the values rate 
that user’s interest in that factor. An interaction between a user and an item can then be described by
the dot product of their vectors. [23] Since the factors are learned from numeric user ratings without
any reference to the items themselves, they don’t directly map to any interpretable factors or 
categories – for this reason LFMs are said to be black-box models [1].

LFMs can be generated by various matrix factorisation models. Perhaps the best-known of them is 
singular value decomposition, or SVD. SVD was developed as a better-performing alternative to 
neighbourhood approaches during the Netflix Prize competition. [23] An SVD model is trained 
using the training data on user ratings of items, and outputs a model consisting of learned factors for
each user and item, as well as user and item biases. When predicting a rating, the biases of the user 
and item in question are added on the dot product of the corresponding factors – this helps the 
system deal with users who consistently give higher or lower ratings, and items that get particularly 
high or low ratings. SVD models can be trained either by using stochastic gradient descent, or a 
gradient descent-based algorithm named alternating least squares (ALS). [7] 

SVD was further improved by considering  the implicit feedback that the user gives by choosing to 
rate certain items. Models of this class are called SVD++, and they tend to perform better than 
standard SVD at the cost of added complexity. [7] Since then, other more complex LFMs have also 
been developed [28], but they are out of scope of this review. As is usual for machine learning 
models, great caution should be taken to avoid overfitting the model to the ratings. As such the 
hyper-parameters of the model should be optimised using cross-validation [7], and the final 
evaluation of the model’s accuracy should be reported on unseen test data.

Explainability
While machine learning techniques have greatly increased the abilities of many artificial 
intelligence systems, they have also become so complex that humans can’t understand why and how
they make decisions. If the model’s behaviour can’t be understood well by humans, it is said to be 
uninterpretable or a black box. Uninterpretable models are a problem for many reasons, perhaps 
most importantly due to lack of trust. If the system can’t tell its user why it made a particular 
decision, why should the user trust that decision? Besides trust, Table 1 shows the seven 
explanatory criteria previously identified for explainability [21].
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Criterion Definition

Transparency Explain how the system works

Scrutability Allow users to tell the system it is wrong

Trust Increase users’ confidence in the system

Effectiveness Help users make good decisions

Persuasiveness Convince users to try or buy

Effectiveness Help users make decisions faster

Satisfaction Increase the ease of use or enjoyment

Table 1: Seven criteria for evaluating the explainability of recommendation systems. Adapted from 
Table 15.1, Tintarev, N., & Masthoff, J. (2011). Designing and evaluating explanations for 
recommender systems. In Recommender systems handbook (pp. 479-510). Springer, Boston, MA.

Justifying the decisions made by the model is especially important in areas like the medical 
industry, where incorrect decisions can have disastrous results [8]. While recommender systems are 
often used in less serious applications such as online stores and social networks, making the 
recommendations explainable is still important since it’s been shown that users prefer 
recommendations which they perceive as transparent [9].

Explainable recommendations approaches
Making recommender systems explainable is an area of active research, and so several approaches 
have been tried. This report divides the approaches to two main classes, embedded and post-hoc 
explanations as proposed by Wang et al. [13], paying particular attention to post-hoc techniques as 
they are the focus of this project. A more extensive survey on explainable recommendations has 
been conducted by Zhang and Chen, which will offer further perspective into the topic [11].

Embedded explanations

In embedded methods the explanation generation is integrated with the recommendations model 
itself [13]. This can be achieved either by using an interpretable model, or adding some notion of 
explainability into the training inputs. When the model itself is interpretable (i.e. white-box), 
explaining its behaviour becomes significantly easier. An example of such a model would be an 
item-oriented neighbourhood model, where the predicted rating for a given user on an item i is 
based entirely on the ratings said user has given to items i is most similar to. In such a simple 
model, the explanation can be generated easily by listing the items i is most similar to, and the 
ratings the current user gave to them. [6] But since interpretable models tend to be simpler than 
black-box models, their recommendations tend to be less accurate as well. This is known as the 
accuracy-interpretability trade-off and it has been observed in many applications of machine 
learning. [1]

MF as a technique can be adapted by adding a notion of explainability into the model’s training 
inputs. One approach is called Constrained Matrix Factorization (CMF) where constraints of some 
kind are imposed in training the MF model, resulting in a model that is no longer a black box [1]. 
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For example, Abdollahi and Nasraoui applied CMF when training MF models by adding an 
“explainability score” as an additional input alongside with the set of ratings users gave to items. 
The explainability score is calculated mathematically, and is higher if the current user has rated 
many similar items, or if similar users have rated the current item (i.e. “Similar to items you 
liked...” or “Users similar to you liked...”). The resulting recommender system gave higher rankings
for items deemed explainable than what they would have had in a regular MF-based recommender 
system. [14]

Embedded approaches also allows researches to add external data beyond the matrix of user ratings 
of items as inputs to the MF model. This is not necessary, as demonstrated by CMF [14], but  
adding external data about the users or items can not only help with explanations, but also with the 
accuracy of the models themselves. Zhang, et al. proposed Explicit Matrix Factorization (EMF), 
where the factors in a MF model are not automatically learned but rather collected from textual user
reviews. The system constructs matrices for how much users cared about each item feature, and 
how well each item was described by the feature. An MF model could then be built using these 
matrices. The system is easily interpretable and explained by simply checking which factors items 
and users score the highest. [10]

Collaborative Topic Poisson Factorization (CTPF) was developed as a model for recommending 
articles to users that considers the textual content of the article alongside the ratings given by users 
to articles. As in EMF, in CTPF the factors for items, which in this case are the articles, directly 
correspond to topics articles are about. [15] When the system recommends articles to a user who 
has expressed interested in, let’s say, biology (a topic articles are about), they will receive articles 
that are about biology (inferred by analysing article content), as well as articles that are popular 
amongst people who have read biology articles (inferred by collaborative filtering). These two 
approaches show how data other than numeric ratings can be used in training recommender 
systems, and how advances in related subjects such as natural language processing play an 
important role in improving the accuracy and explainability of recommender systems.

Embedded explanations tend to naturally have good explainability because the explanations and 
recommendations models are not decoupled. In terms of accuracy, it is unclear if embedding 
explanations to the model generally increases or decreases it’s accuracy, as both positive and 
negative results have been reported [1][13][14]. In addition, unlike post-hoc methods, embedded 
explanations are not model-agnostic and require a particular type of model (such as MF) or domain 
(such as academic research papers) to function, therefore making them less flexible. External data 
isn’t always available either, making some approaches infeasible for certain datasets [1].

Post-hoc explanations

Another way to make the black box’s recommendations explainable is to build a white-box model 
that generates explanations to a decision made by the black-box recommendations model [11]. This 
approach is called post-hoc explainability because the recommendations are made explainable after 
they’ve been produced by the original model, which is left untouched.

Peake and Wang used the post-hoc approach by extracting logical association rules from the 
recommendation model’s inputs and outputs. The rules extracted were of form {X => Y}, where X 
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is an item the user has experienced preference for, and Y is the recommendation. The association 
rule in question can be expressed in words as “Because you liked X, we recommend Y”. The 
association rules themselves can be used to generate recommendations by selecting the set of rules 
{X, Y} for a user U where X has been liked by the user while Y has not, rating the rules by some 
metric and selecting the top n as “explainable recommendations”. The association rules are 
combined with the black box model by marking recommendations that are produced by both models
as “explainable recommendations”. [1] Here, the researchers limited the size of the association rules
to just two items (X and Y in the above example) – experimenting with rules consisting of more 
items is an important consideration for further study. While a MF model was used in the research, 
the recommendations model is model-agnostic, meaning that it can generate explanations for any 
model. [1]

Other post-hoc methods have also been tried. An approach called Fast Influence Analysis (FIA) 
used influence functions to calculate which inputs to the recommendations model (i.e. the user’s 
reviews) had the greatest (positive or negative) influence on the prediction. This was done by 
calculating the difference in predictions when the input was excluded from the training set of the 
model. Because retraining the model every time would be computationally expensive, an influence 
function was used to estimate this influence. [12] An advantage of FIA to association rules is that it 
was able to give an explanation to every recommendation, while association rules could only 
explain certain proportion of recommendations (measured by a metric called “Model Fidelity”) [1]
[12].

Machine learning techniques have also been employed in generating post-hoc explanations. Wang et
al. designed a framework based on reinforcement learning that not only attempts to explain the 
recommendations of any black-box system but also attempts to optimise the generated textual 
explanations according to some knowledge of what good explanations should look like, such as 
sentence length. [13][11] While Machine Learning can empower the explanation generation, it risks
kicking the explainability problem down the road – if the explanation generator is a black box itself,
do you then need another system to explain the behaviour of the explanation generator?

Overall, the post-hoc approach is the most flexible way to generate explanations to recommender 
systems because it allows the original recommendations model to be a black box and will therefore 
work with most models. [11] However, post-hoc models may not be able to explain every 
recommendation [1], or they may be uninterpretable black boxes themselves [13].

Evaluating explainable recommendations
Like everything in science, new recommender systems need to be evaluated according to some 
metric to make sure they are useful to users. There are two main concerns in evaluating explainable 
recommendations systems: evaluating the accuracy of the recommendations themselves, and 
evaluating the quality of the explanations. [11]

In terms of accuracy, the goal for an explainable recommender system is to perform as well as a 
standard, non-explainable recommendations model. The accuracy of the system can be evaluated 
using standard methods, such as root mean square error (RMSE) of predicted numeric ratings, or 
precision and recall when predicting top-n recommendations. [11]
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While evaluating accuracy is relatively easy, it is much harder to evaluate the quality of the 
explanations themselves. This is because quality in this case is somewhat subjective – users A and B
might prefer different kinds of explanations. Both quantitative and qualitative techniques have been 
developed to rate the quality of explanations. One way to quantitatively evaluate explainability is to 
calculate the proportion of recommendations made by the system that are deemed explainable. This 
metric, called model fidelity, was first proposed by Peake and Wang for evaluating their association
rules -based explanations. [1] Similar approach was taken by Abdollahi and Nasraoui, who 
proposed explainability precision and -recall for measuring precision and recall for explainable 
recommendations [14]. Just as precision measures the proportion of relevant items in 
recommendations, explainable precision describes the proportion of explainable items amongst 
those recommended. Explainable precision is therefore a similar metric to model fidelity.

These metrics are useful for models where only a proportion of all recommendations are 
explainable. They are not relevant for models that can generate some type of explanation to all 
recommended items, as they would achieve perfect fidelity by definition. They also don’t say 
anything about the quality of the explanations, meaning that, with model fidelity for example, a 
model may have high fidelity but produce explanations that are effectively useless for humans.

Explanations can also be evaluated using user studies. This is a good approach for measuring 
explainability because the motivation for improving explainability is to help users understand or 
trust the recommendations. [21] In their research on using reinforcement learning in explaining 
recommender systems, Wang et al. used human subjects to evaluate their system alongside 
specialised quantitative methods. Using a database of Yelp reviews on restaurants, their system 
generated textual explanations for why the restaurant is recommended to the user. In each task, the 
users were asked to choose the explanations that adequately explained why the restaurant was 
recommended to them. The new system was tested alongside two other systems, one that selected 
sentences from the reviews randomly and a “state-of-the-art explainable recommendations model”, 
where the new system was found to have performed the best. [13] The study specifically measured 
the “usefulness” of the explanations, which roughly corresponds to the effectiveness-metric in the 
seven explainability metrics listed earlier.

If the researches have access to real-world systems, experiments can be run using their users in 
much larger scale and more realistic environment than what is possible in the laboratory. Zhang et 
al. tested their Explicit Factor Model in the Chinese online shopping website JingDong, which at 
the time of research had more than 100 million users. The researchers found that in an A/B test, the 
Click-Through Rate (CTR) was significantly higher for users who received their feature-level 
explanation than for those who received a generic “People also viewed...” explanation or no 
explanation at all. [10] CTR is a measure of the persuasiveness of the explanation, which is 
especially valuable as improving it can have a significant impact on a company’s revenue in 
industrial applications. While experiments like this are easy to run for companies with an 
established user base, it is important to consider the potential risks to users’ privacy as they may not
have explicitly signed up to participate in the experiment, and to make sure gathered data is 
anonymous or properly anonymised.
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Visualising explanations
After the explanation has been generated, it needs to be presented to the user. This is an important 
step: no matter how insightful an explanation, it won’t help if the user can’t understand it. While the
presentation of explanations falls into the fields of human-computer interaction and user interface 
design which are out of scope for this review, it’s important to explore some of the presentations 
used in previous applications.

The user study in the e-commerce platform JingDong used word clouds of feature-opinion pairs as 
its explanation (Figure 2) [10], while an example by Amazon.com mentioned in the section below 
uses a list of items that influenced the recommendation (Figure 3) [17]. Both represent explanations 
deployed in real systems with real users. It’s also worth noting that both explanations require some 
user action to be shown: the JingDong explanation is displayed when the user hovers over a 
recommendation, while Amazon’s is hidden deep in the platform and under a special pop-up 
window. This suggests that in real systems, explanations should be shown as “details on-demand” 
items instead of being the main focus of the view.

Figure 2: The interface design of an explanation deployed in JingDong in an A/B test. The top-4 
recommendations are shown to user as they browse items in the e-commerce platform a), and the 
word cloud b) is shown as an explanation when the user hovers over a recommendation. 
Reproduced from Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., & Ma, S. (2014, July). Explicit 
factor models for explainable recommendation based on phrase-level sentiment analysis. In 
Proceedings of the 37th international ACM SIGIR conference on Research & development in 
information retrieval (pp. 83-92). ACM.

In addition, Tintarev and Masthoff have suggested several methods and interaction techniques for 
presenting explanations, as well as the recommendations themselves. Perhaps most interestingly, 
Table 2 shows their example of how to present influence-style explanations for a recommender 
system. [21]
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Book Your rating (out of 5) Influence (out of 100)

Of Mice and Men 4 54

1984 4 50

Till We Have Faces: A Myth Retold 5 50

Crime and Punishment 4 46

The Gambler 5 11

Table 2: An example on how to present an influence-style explanation (i.e. which of the previously 
rated books influenced the recommendation the most) to a user. Adapted from Tintarev, N., & 
Masthoff, J. (2011). Designing and evaluating explanations for recommender systems. In 
Recommender systems handbook (pp. 479-510). Springer, Boston, MA.

Uses of explainable recommendations in industry
Major web platforms have pioneered the use of recommender systems in their products, but so far 
few have focused on improving the explainability of the systems. There’s little academic research 
published on the applications of explainable recommendations in industry, so a variety of less 
reliable sources are used in this section. In addition, due to the quick pace of innovation in today’s 
technology companies, the examples used here will likely be out of date quickly.

Amazon has been working on their sophisticated recommendations models since at least the early 
2000s [4], and they have used a variety of explanations in their systems. Firstly, some 
recommendations are labelled with a sentence describing how it was found, such as “Customers 
who bought this item also bought...”. The latter explanation type has been copied by various other 
web platforms such as the investing app Robinhood. [16] Amazon has also introduced the ability for
users to influence how much a purchase should influence their recommendations, or if it should be 
filtered out altogether. This can be useful for filtering out items that were purchased as gifts, for 
instance. Users can also see which of their previous purchases or ratings influenced a 
recommendation, as shown in Figure 3 [17]. This explanation style is similar to the association rules
[1] and influence analysis [12] described in previous sections and implemented in this project.
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Figure 3: An explanation by Amazon.com explaining why the category “Coffee, Tea and 
Beverages” is recommended to the author, containing items the author has purchased in the past. 
The widget also allows excluding an item for consideration (for example, if it was a gift or the user 
didn’t like it), thus improving the scrutability of the system.

Facebook uses artificial intelligence in deciding what content to show to its users. The decision on 
which posts or advertisements to show to a given user can be thought of as a recommendation 
problem. Facebook launched its first explanations in 2014, when they released their “Why am I 
seeing this ad?” feature. In 2019, the system was improved and extended to cover posts. With the 
new feature users can see why they’re seeing a post as well as indications on why the posts are 
ordered in the way they were. Users are also able to see detailed information on why an 
advertisement was shown to them, including a timeline on how the advert creator has interacted 
with their personal data. Screenshots of the feature are shown in Figure 4. By releasing the feature 
Facebook wanted to increase transparency in its products, as well as help users control their own 
news feed, i.e. improve the scrutability of the product. [18] In addition, fears of Facebook being 
used by political actors to show highly targeted, often false or inaccurate, political advertisements 
increases the need for transparency in social networks [19], and explainable recommender systems 
can play a role in it.
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Figure 4: Facebook’s “Why are you seeing this post?” explanation, telling the user what past 
actions caused the post to be shown to them. Reproduced from Sethuraman, R. (2019, March 31). 
Why Am I Seeing This? We Have an Answer for You. Retrieved October 2, 2019, from 
https://newsroom.fb.com/news/2019/03/why-am-i-seeing-this/.

Recently some recommender systems have faced criticism for directing users to a “rabbit hole” of 
increasingly radical content. An example of such system is YouTube’s recommendation system, 
which recommends videos and channels for a user based on their watch history. When studying 
right-wing channels, researchers found some evidence that YouTube’s recommendations algorithm 
radicalised users by recommending increasingly radical channels to them [20]. It’s worth noting that
this doesn’t mean there’s anything wrong with the recommender system – in fact, it seems to work 
exactly as it was designed to, recommending videos accurately to users who would be interested in 
watching them. This problem can be called the radical content problem, and little academic 
research has been conducted on solving it. An interesting research question for the future would be 
seeing if any of the explainability approaches could be used in discouraging the recommendation 
systems from recommending increasingly radical content, or discovering if the problem exists in the
first place. Using association rules to visualise and analyse the recommender system as a network to
identify the existence of the radical content problem in the system is briefly considered at the end of
this report.

Conclusion
Research on explainable recommendations (and explainable AI in general) has advanced rapidly 
over the past few years. This has likely been motivated by the increased deployment of 
recommender systems in real-world systems as well as the development of more accurate but less 
interpretable models such as matrix factorization. The task of developing perfectly explainable 
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recommendation systems is still far from complete. Due to the negative media attention big social 
media companies like Facebook and YouTube have received for their recommendation systems, it is
likely that we will see significant progress in real-word adoption of some of the above-mentioned 
explainability approaches in the next few years, suggesting a bright future for explainable AI 
research.
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Goals
The central goal of the project was to improve the explainability of user-facing recommender 
systems. To achieve that, a number of following primary goals were set. The goals were:

1. Implement a state-of-the-art recommender system.

2. Implement two ways of generating post-hoc explanations to recommendations

3. Define the metrics on how to best evaluate the explanations, and conduct experiments to 
evaluate the performance of the explanations under the metrics

As shown in the context survey, “state-of-the-art” was determined to mean a latent factor model -
based recommender system. It was decided that the explanations should be evaluated using a user 
study as well as offline experiments, and as such setting and running a user study on the 
explanations was chosen as the main method for achieving the third goal.

The scope of primary goals was uncertain at the start of the project. Most importantly, it was not 
clear whether a user study would be required for evaluating the explanations. For this reason, two 
secondary and tertiary goals were also defined. The secondary goals were improving the association
rules -based explanation generation algorithm and allowing users to influence the system’s 
recommendations by telling it they are not interested in a recommended movie (i.e. improving the 
scrutability of the recommender system). The tertiary goals were finding ways to objectively 
measure and test the best ways to visualise explanations to the users, and exploring the ways 
explainability can help data scientists understand the recommender system better.

Design
The primary goals of the project directly correspond to the steps taken in the project. This section 
describes the design and implementation of the recommender system, both types of explanation 
generators and the web application for running the user study. The user study itself is described in 
the evaluation-stage. Figure 5 shows the order of user and server actions in the user study, which 
illustrates how the various components of the system fit together.

The source code used in the research has been made available under the permissive MIT License 
[33]. It can be found in two separate repositories: repository SHProject includes the Python code 
used in investigation and running the back-end server in the user study, and repository 
WebAppSHProject features the React.js front-end application used in the user study. The 
applications are hosted in GitHub under the URLs https://github.com/villekuosmanen/SHProject 
and https://github.com/villekuosmanen/WebAppSHProject. The code can be used to repeat the 
experiments presented in this study, and with minor modifications the implemented explanation 
generators should be usable in any recommender system.
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Figure 5: A flowchart describing the order of actions in the user study. Using the web application, 
the user first rates films. The recommender system then generates recommendations for them, the 
explainers generate explanations for the recommendations, which are then shown to the user.

Recommender System
The recommender system was designed to be based on collaborative filtering (CF) techniques. In 
CF , the recommendations are based on reviews from other users similar to you [7]. CF was chosen 
as the technique of choice due to its high accuracy, domain-independence (CF techniques don’t 
need domain knowledge about the items, unlike content-based ones) and abundance of high-quality 
datasets. The dataset used for the problem was the publicly available MovieLens dataset consisting 
of film ratings by real users [24]. This dataset is widely used in recommender systems research, and
since CF is not domain-specific, the models and algorithms will usually generalise to other fields 
besides film ratings. When developing the recommender system, the development dataset 
containing 100’000 ratings was used to lower training time; the 20 million rating benchmark set 
was used for evaluation and use study.

The recommender system was implemented in Python using the Surprise library [25], which 
provides a range of CF algorithms for implementing recommender systems. Out of these, the 
implementation of SVD was selected. SVD is a matrix factorisation algorithm used to generate 
latent factor models, which can then be used to predict ratings that a user u would give to an item i 
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[7]. SVD was selected over other, generally better-performing models such as SVD++ due to its 
relative simplicity and status as the most well-known matrix factorisation algorithm. Because the 
goal of the project is to study explainability, the small deficiency in performance doesn’t matter.

Before training the latent factor model, the data was split to train and test data using a random 75%-
25% train-test split of ratings. This may not the most ideal way to split data: this way some users 
and items won’t have any ratings in one of the sets, making their predictions non-personalised (i.e. 
prediction is the bias of the user or film). There’s surprisingly little literature on the best practices of
splitting datasets for matrix factorisation models; as such, the before-mentioned simple split of data 
was used.

After training, the recommender system can be used to predict ratings for the items and users in the 
training set. This is enough for static evaluation: however, the user study that was conducted using 
the system requires dynamic recommendations. Generating new personalised recommendations for 
a newly-added user with a few ratings is not possible: the model first needs to learn the user’s latent
factors. This can be done by fully retraining the model – however, this method is infeasible in live 
systems as training the model for millions of ratings is computationally expensive and would need 
to be done at every new rating. Because the existing model is “almost correct” and would work as a 
good starting point for adding the user, the method can be optimised in many ways depending on 
the underlying implementation of the SVD algorithm. For example, some systems based on gradient
descent could be initialised with the original model’s weights (here, latent factors), which would 
allow the algorithm to convergence faster. However, Surprise’s SVD uses a fixed number of epochs 
in running its gradient descent, and doesn’t stop until all epochs are done.

As such, a new operation for the SVD model was devised, which adds a new user to the model. This
operation only trains the new user’s latent factors, and leaves the factors for items and other users 
unchanged. This radically speeds up training. Of course, this also means that the new user’s ratings 
won’t influence the factors of items and improve the model for other users. This is an acceptable 
trade-off though, as the number of new ratings (~10) is so much smaller than the number of old 
ratings (~20’000’000). In a real system, the model would likely be re-trained regularly (e.g. once a 
day) to integrate the ratings into the model. The difference between retraining and using the 
optimisation is evaluated objectively in the Evaluation-section.

Hyper-parameter optimisation

Before deploying the system, its hyper-parameters were optimised. The Surprise SVD algorithm 
contained two important hyperparameters to evaluate: number of factors in the latent factor model 
(n_factors) and number of epochs in training (n_epochs). These parameters were optimised by 
heuristically sampling the space of reasonable values for the two variables, and running cross-
validation on the selected values using the training set. The results of this procedure are plotted in 
Figures 6 and 7 for n_factors and n_epochs, respectively.
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Figure 6: The measured RMSE in cross-validation (n_folds=4) by various values of the n_factors 
hyper-parameter for the recommender system.

Figure 7: The measured RMSE in cross-validation (n_folds=4) by various values of the n_epochs 
hyper-parameter for the recommender system.

Based on the above results, the chosen values for n_factors and n_epochs were 50 and 20, 
respectively. The results can’t be considered conclusive because the tests were carried separately; 
it’s likely that the two parameters influence each other at least in some ways. In addition, more 
parameter values could have been tested for both parameters to improve the confidence of the best 
value. Despite these flaws, the tests give a good estimate at what the optimal values for the 
parameters roughly are, and that suboptimal hyper-parameter values aren’t causing a significant 
negative effect on the overall performance of the model.
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Ethics

Because the used dataset contains opinions of real people, an ethical approval was required to use it 
in research. Since the data is anonymised and public, no major concerns arose and ethical approval 
was granted with the code CS14599, which is provided as Appendix 2.

Explanations
Latent factor models perform well, but are inherently uninterpretable because the factors are learned
automatically from data with no concern given to the attributes of the items and users. To make 
these recommendations explainable, two post-hoc methods were tested: a method based on mining 
association rules from the set of top-n recommendations, and a method based on calculating how 
much the users’ previous ratings influence the prediction.

Association Rules

The method for association rules follows the approach developed by Peake and Wang [1]. As a post-
hoc explanation, the method works after the recommender system has already been trained.

Firstly, the top-n recommendations for each user are outputted. Unlike in the original paper, the 
items previously rated by the user were not filtered out (though they were filtered out in the 
evaluation stage). This way the top-D items selected for training the association rules were simply 
the top-n predicted ratings. The value of n and D selected was (n, D)=30, in accordance with the 
source paper.

The set of top-D items for all users were then used to train the set association rules. These rules 
describe IF => THEN relationships in the data, and can be mined from a set of transactions using a 
known algorithm. The set of transactions used was the set of top-D items for all users, and the 
apriori algorithm [26] was used to generate the association rules. An implementation of the apriori 
algorithm from the mlxtend Python library [27] was used. The set of association rules was the 
filtered according to a few rules. Firstly, the maximum number of items in antecedents (the IF-side 
of the rule) was three, and maximum number of items in consequents (the THEN-side of the rule) 
was one. This meant that rules of type ((A => D), (A & B => D) and (A & B & C => D)) were 
allowed. The minimum support of the rules was set as 0.05, while the minimum confidence was set 
as 0.3. Here, support refers to the share of all transactions that contain all items in the rule, and 
confidence refers to the share of transactions containing the antecedents that also contain the 
consequent.

Once the association rules were filtered, they were sorted according to support. The association 
rules can then be used to generate explainable recommendations in two ways. Firstly, the rules can 
be used directly as a recommender model by filtering the rules to those whose antecedents appear in
the user’s list of previously rated films. The consequents in the remaining rules work as explainable 
recommendations with the explanation “Because you watched X [antecedents], we recommend Y 
[consequent]”. However, this method doesn’t properly personalise the recommendations to each 
user since the recommendations are sorted by global support instead of the predicted rating of the 
recommender system. The second way is to generate recommendations as normal using the 
recommender system, and try to make them explainable afterwards by using the association rules. 
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This is called post-hoc explainability, and in association rules works if a rule is found where the 
consequent is the predicted item, and the antecedents have all been previously rated by the user. 
Since not all recommendations can be made explainable, this method introduces the concept of 
model fidelity. Model fidelity describes the share of recommendations that can be made explainable
amongst all of them, and is explored further in the Context study and Evaluation.

Influences

The second type of post-hoc explanation considered in this project was showing how much each 
previously rated film influenced the rating. Influence analysis has been previously applied to 
recommender systems in the Fast Influence Analysis system [12]. The influence of a rated film is 
the difference between the predictions with and without that rating in the recommender system’s 
training set. Formally, for a user with a set of ratings R = {r1, r2, r3 … rn} and a recommender system
S outputting a predicted rating for an item I and a set of user ratings R, the influence of r1 to a 
predicted rating for any previously unrated film is:

Influence=S (I ,R)– S( I ,R ∖r1) (1)

The simplest way to calculate the influence of a previously rated item on a recommendation is to re-
train the model without that rating in the training set, and compare the resulting predictions. 
However, this idea is absurd due to the high computational cost in fully re-training the model, 
especially since an influence score would need to be calculated for every previously rated item in 
the training set. FIA solved the problem by applying statistical influence functions to the calculation
[12]; in this project, an optimised method to approximate the influence by allowing fast re-training 
of a single user was used, which is described in the Recommender System -section.

The biggest benefit of the influence method is that explanations can be calculated for any 
recommendation, which means that model fidelity of the explainer is always 100%. When showing 
the explanation to users, it may make sense to restrict the influences shown to just the most 
affecting ones – in the user study, the top three positive and negative influences were shown.

Web application
To study whether real users find the explainable recommendations useful, a user study was 
conducted. The study was conducted through the internet, which required the implementation of a 
web platform that would allow users to rate films, generate and present the explainable 
recommendations to them on-demand, and persist the generated research data and email address. 
The web application was implemented in two components: a front-end application built in React.js, 
and a back-end RESTful API that’s responsible for actually generating the recommendations and 
explanations.

Front-end

The front-end was built as a single-page React.js [29] application using the tool create-react-app 
[30]. The front-end fetches data from the API and renders it to the user. All rendering is done client-
side. Screenshots of the web application are shown in Figure 8 and 9, and further highlights of the 
explanations are shown in figures 13, 14 and 15 in later sections.
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Figure 8: A screenshot of the rate movies screen of the web application, with several films already 
rated (right side of the screen).

Figure 9: A screenshot of the recommendations screen of the web application. Here, the user is 
shown details of the recommended film, and explanation (association rules) and a widget to rate 
the recommendation.

API

The API was built using the Flask web framework [31], and contains five endpoints:

• /movies (GET)

• /movies/details/<int:movie_id> (GET)

• /movies/movie-ratings (POST)
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• /recommendations/responses (POST)

• /emails (POST)

All of these endpoints are stateless, although they do have an implied ordering: the emails and 
responses endpoints aren’t supposed to be used until the end of the study.

The movies-endpoint is used to fetch the titles and ids of available films in the database. This allows
the client to offer an auto-complete search bar to the user, at the expense of transferring a relatively 
large amount of data. The endpoint for movie details is a proxy for searching its data from The 
Movie Database (TMDb) and returning the result to the user. This request is proxyed through the 
back-end for three reasons: TMDb uses different film identifiers than the rest of the application 
(which uses MovieLens ids) so the back-end also performs id translation, direct requests to the 
TMDb API from the client could be blocked by Cross-Origin Resource Sharing (CORS) policy 
[32], and embedding the TMDb API key in client code would compromise the key, which is 
considered secret.

The POST-request to movies/movie-ratings posts the user’s rated movies to the back-end. This 
triggers a long computation in the back-end, as it adds a new user to a copy of the pre-trained 
recommender system, generates recommendations to the user, and finally generates explanations to 
them. The explainable recommendations are then returned to the client. POST-requests to responses 
and emails are persisted in the private part of the file system of the server, in different files.

Deployment

The web application was deployed to the host server provided by the School of Computer Science 
in the University of St Andrews. The built version of the front-end was deployed in the public folder
of the nginx server, while requests to the API were proxy-ed to the WSGI server running the API 
process on the host server. As a result the web application was accessible to end users in the address
https://vik.host.cs.st-andrews.ac.uk/, and research data was saved in the encrypted, access-
controlled school servers.

To make sure the application is working as expected, information and errors from the web 
application were logged to log files. These logs did not compromise the privacy of users, since 
there’s no way of knowing which requests were made by which users (as the users had no 
individual id’s).
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Evaluation
Explanations exist for humans, not machines. As such, the best way to evaluate explanations is to 
use live users. While explainability offers many benefits to end users, the two central benefits are 
increase in trust and user interest. Previous studies have found that adding explanations to 
recommendations made users like the system more, as well as feel more confident about its 
recommendations [9] as well as increase their Click-Through Rate (CTR) in comparison to 
recommendations with no explanations [10]. Because of this, a user study was conducted test if the 
type of explanation offered affects the trustworthiness and persuasiveness of the recommendation.

In addition, the recommender system and explanation generators were evaluated offline (i.e. 
without feedback from human users) using a variety of metrics.

User study
The study was conducted to test the effect of explanation type to the measured trustworthiness and 
persuasiveness of the recommendation. The explanation types studied were 

1. baseline condition with no personalised explanation (baseline)

2. explanation based on association rule mining (association rules), and

3. explanation based on calculated influence of rated films (influence).

To see recommendations, users would first rate a number of films they’ve seen before, on the scale 
of 1-5. Afterwards, the system would attempt to show 5 recommendations for each explanation type
to them. For each recommendation, the user would rate how interested they are in viewing the film 
(persuasiveness) and how much they trust the recommendation (trustworthiness).

Recommendations for association rules explanation were selected in a different way than for the 
other conditions due to the low model fidelity of the explanation generator (evaluated in the Model 
Fidelity section below). The top-1000 films recommended were checked for explainability, and the 
top-5 of them were selected, if available. In the uncommon case where no explainable 
recommendations were found, no association rules explanations were shown for the user. For the 
other two conditions, the top-10 recommendations (excluding ones used for association rules) were 
randomly split between the conditions. Before presenting the recommendations to the user, their 
order was shuffled.

To allow users to make more informed decisions on whether they’d like to see the recommended 
film or not, the film’s poster and a short description was included with it. This data was fetched 
through The Movie DB API [36].

Data collection

The study was conducted online in a purpose-built web application. The application is described in 
the “Web Application” subsection of Design, and it was hosted in the researcher’s host server in the 
University of St Andrews domain. Test subjects were recruited by circulating the study advert in 
social media and university newsletters. The study took around 10-15 minutes to complete, and at 
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the end participants were given an opportunity to participate in a raffle to win a £50 Amazon 
voucher. Overall, 41 participants took part in the study.

Ethics

An ethical approval for the study was requested before any research activities were conducted. To 
protect the participants, data collection for the main part of the study was done anonymously. In 
addition, users’ rated movies and recommendations concerned were not recorded, since these 
ratings could, in theory, leak the users’ identity. The email addresses collected to raffle off the prize 
were stored separately from the main data.

In addition, it was deemed possible for certain participants to be affected by strong adult content or 
themes in some recommended movies. This was mitigated by allowing users to opt out of seeing 
movies rated 18 or R18 by the British Board of Film Classification in the application. With these 
concerns resolved, ethical approval was granted to the study with the code CS14723, which is 
provided as Appendix 3.

Results

The results of the study were analysed as a one-way repeated measures ANOVA to  compare the 
effect of explanation type on recommendation interest and trust. The value used for interest and 
trust in each condition was the mean of all ratings (in that condition, by that user). This was done to 
simplify the data analysis. In addition, ratings for recommendations which lacked a description and 
poster in The Movie DB API were excluded from the analysis, as were users who had not given a 
score for one of the three categories. This led to the sample size reducing from 41 to 32 participants.
The types of explanations tested, referred to as “conditions”, were “baseline”, “association rule” and
“influence” (terms defined in Experiment Design). As repeated measures ANOVA was selected as 
the statistical significance test,  Mauchly's test was used to confirm that the data fulfills the 
sphericity assumption.
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Figure 10: A bar chart of mean of user-rated interest (yellow) and trust (grey) measured in the user
study, for each type of explanation. Error bars (i.e. 95% confidence intervals) are also shown

For both interest and trust, Mauchly's test showed that the data fulfills the sphericity assumption, χ2 
= 2.746, 2.052, p = 0.253, 0.358. There was a significant effect of explanation type to interest, F(2, 
62) = 5.166, p = 0.008, and to trust, F(2, 62) = 7.254, p = 0.001. 

Bonferroni corrected paired samples t-tests were used to make post hoc comparisons between 
conditions, for both interest and trust and between all conditions. For interest, there was a 
statistically significant difference between the ratings for association rules (M= 4.13, SD=0.91) and 
baseline (M= 3.59, SD=0.85) conditions, p=0.031, and the difference between the ratings for 
association rules (M= 4.13, SD=0.91) and influence (M= 3.64, SD=.82) conditions were close to 
statistical significance, p=0.061. For trust, there was a statistically significant difference between 
the ratings for association rules (M= 4.15, SD=0.85) and baseline (M= 3.54, SD=0.83) conditions, 
p=0.006, and association rules (M= 4.15, SD=0.85) and influence (M= 3.55, SD=.83) conditions, 
p=0.003. The means of measured interest and trust for each explanation type are plotted in Figure 
10 along with their 95% confidence intervals.

Recommender system
The recommender system was evaluated by predicting ratings for all user-item pairs in the test set, 
and calculating the error metrics in the prediction. The metrics used were root mean square error 
(RMSE) and mean absolute error (MAE) which are commonly used for evaluating recommender 
systems [7]. The measured errors on the tet set with hyperparameters n_factors=50, n_epochs=20 
was: rmse=0.7897, mae=0.6010. Most benchmark results for the MovieLens datasets come from 
the 10M ratings dataset, where a good benchmark result for SVD measured a RMSE of 0.7720 
using a 90:10 percent split in training and testing data [28]. While the 10M and 20M datasets, as 
well as the used splits aren’t directly comparable, the fact that the literature value on a smaller 
dataset outperforms the result in this report suggests that in terms of performance, the model is 
suboptimal. Since the recommender system’s performance is not the main focus of this project, it’s 
not a major issue.

Model Fidelity
As defined by Peake and Wang, model fidelity describes the share of recommendations that can be 
explained by the explanation model, or formally:

Model Fidelity=
explainable items∪recommended items

recommended items
(2)

Where explainable items and recommended items are subsets of all items in the system. [1]

Some post-hoc explainers, such as the influence explainer shown here, have a model fidelity of 
100%, because they can by design explain every recommendation. For such explainers, model 
fidelity is not a sensible measure. For the association rules explainer, model fidelity is a key 
measure since not every recommendation can always be explained.
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Model fidelity was measured by listing the top-n recommendations for all users in the dataset. The 
previously-generated association rules were then used to generate explanations for the 
recommendations. Association rules were generated using the threshold support and confidence 
values of 0.05 and 0.3, respectively. The number of explainable recommendations was then divided 
with the number of all recommendations to get the result.

To run the calculation, a sample of 1/10th of users was selected. The users were selected by picking 
every 10th user by their id value. In addition, recommendations of items the users had previously 
rated (in their training set) were filtered out. In this way, model fidelity was measured to be 0.0650, 
or around 6.50%. This is almost an order of magnitude lower than the results reported previously 
[1], though the numbers aren’t directly comparable due to different thresholds and datasets used. 
The significance of this result is discussed further in the Discussion-section.

Evaluating influence calculation
To evaluate the accuracy of the influence explanation quantitatively, two experiments were set up. 
The first experiment studied how much the measured influence of a previously rated film varies 
when the user is added to the model several times. Ideally, the variance should be low: the influence
of a film on a prediction should remain consistent. The second experiment compared how the 
optimised method of training the model for a user compares to full retraining of the model, in 
measured precision and recall of predictions. In order for the optimisation to be valid, there should 
not be a major difference between the methods. Finally, the achieved speed-up by using the 
optimisation versus fully re-training the model was studied.

Experiment 1

In the first experiment, 100 simulated users were created, with 10 random ratings for random films 
each. Each user was then predicted their top-6 recommendations. For each recommendation, the 
influence of all the films rated by the user was calculated 20 times, and the mean and standard 
deviation of the calculated influences of a particular film was recorded. In the end, the mean of 
means all influences was measured to be 0.166, and the mean of standard deviations of the repeated 
mean calculation was 0.128. The distributions of measured means and standard deviations are 
plotted in Figures 11 and 12.
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Figure 11: A previously rated film’s influence on a recommendation was calculated repeatedly 
(n=20). The density of the means of these influences is plotted here.

Figure 12: A previously rated film’s influence on a recommendation was calculated repeatedly 
(n=20). The density of the standard deviations of these influences is plotted here.

The measured standard deviation shows that the influence calculation has a relatively high variance.
If the average rated film’s calculated influence on the prediction is 0.166 stars, recalculating the 
influence will have lower and upper 95% confidence bounds (+-2SD) of 0.09 – 0.422 rating points. 
These results shows that the calculated influences are more like “rough guesses” than exact values, 
but that this uncertainty is more due to the random effects in training this recommender system than
due to issues with the optimised retraining method.
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Experiment 2

Second experiment studied the precision of recommended films between the optimised training and 
a full retraining of the model. Due to the high computation cost of retraining, the development 
dataset containing 100’000 ratings was used for this experiment. For 50 times, a random user was 
constructed with 20 random ratings. Then, three recommendation algorithms were trained: One 
fully trained with the training set and the user added through the optimisation (the effect algorithm),
and two trained with the user added directly to the training set (the baseline and control algorithms).
20 film recommendations were then generated for each algorithm. The precision of the control and 
effect algorithms was calculated as the number of recommendations that were also recommended to
the baseline algorithm, divided by total number of recommendations.

In the end, the mean and standard deviation of precisions for effect and control algorithms was 
calculated. The results were:

Effect: mean=28.1%, std=7.8%

Control: mean=28.7%, std=8.2%

As the means are so close to each other, there doesn’t seem to be a meaningful difference between 
the algorithms, and as such the optimisation for adding a user to the algorithm seems valid. 
However, the precision of both groups is surprisingly low. This indicates that the recommender 
system used has a relatively high effect of randomness in training it. 

Experiment 3

In experiment 3, the speed-up achieved through the optimisation was compared to fully retraining 
the model. To do this, a timing of the model was first measured for ordinary training. Then, an 
operation that adds and trains a new user on the model was timed. Both timings were taken three 
times. The results were:

• Full training: 10min 46s, 11min 13s, 10min 40s (mean = 10min 53s)

• Optimised: 0.4s, 0.01s, 0.01s (mean = 0.14s)

Based on the results, the optimised method is thousands of times faster (~4566 times, in fact!). It’s 
also more scalable – the time takes should not increase significantly as the number of ratings 
increases.
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Discussion
This section first discusses whether the goals set at the beginning we achieved, the validity and 
implications of the user study, and the challenges in directly adding the implemented explanation 
generators to real systems. The report then defines the extreme content problem, and the possibility 
of using association rules to map the recommender system and critically evaluate whether the 
system suffers from the problem.

Goals
The primary goals of the project were:

1. Implement a state-of-the-art recommender system.

2. Implement two ways of generating post-hoc explanations to recommendations

3. Define the metrics on how to best evaluate the explanations, and conduct experiments to 
evaluate the performance of the explanations under the metrics

All primary goals have been achieved. While the goals didn’t define the usefulness of the 
explanations as an explicit goal, it’s implicitly assumed to be a metric of success. As such, the 
Discussion-section below contains a thorough discussion on how the explanations could be added to
a real system, and whether adding them would add value to its users. The recommender system 
implemented here is state-of-the-art in the algorithms used in implementing it – in order to use it in 
a production-grade system, the model would likely require some improvements to its accuracy as 
mentioned in the Evaluation-section.

In order to focus on the thorough evaluation of the implemented explanation generators, the 
secondary and tertiary goals were explored in lesser extent. While this project allowed the use of 
association rules with more than one antecedent, no theoretical analysis was conducted as to why 
the explanation generation here is better than in the past. In addition, scrutability was not considered
as a metric of explainability in this research. Of the tertiary goals, the goal of using explanations in 
data analysis was explored through mapping the association rules as a network. This allows 
visualising the recommender system, and potentially analysing it quantitatively using network 
analysis tools. This is described later in the Discussion-section, and is considered to have major 
potential for further study. The need for a more objective approach in visualising the explanations to
users was recognised in the project, but it was considered to be out of scope. The goals are further 
summarised in Table 3.
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Goal Priority Status

Implement a state-of-the-art recommender system Primary Yes

Implement two post-hoc explanation generators Primary Yes

Define and evaluate metrics for explanations Primary Yes

Improve method for generating association rules explanations Secondary No

Use explainability to improve scrutability of the recommender system Secondary No

Use explanations in analysing recommender system behaviour Tertiary Partial

Define an objective approach in evaluating explanation visualisations. Tertiary No

Table 3: Summary of goals, and whether they were achieved or not. Note that the secondary and 
tertiary goals were set as alternatives in case the evaluation-step would not require an extensive 
user study. With the user study, completing them was out of scope.

User Study
The trustworthiness of a recommender system has been previously linked to two properties: the 
transparency of the recommendation, and the accuracy of the recommendation algorithm. The 
interface design of web pages has also be measured to influence user trust.[21] Since users are 
thought to prefer products they trust, the user study aimed to measure whether adding explanations 
to recommendations, and as such increasing their transparency, increases the trustworthiness of the 
system. Persuasiveness was used to simulate how explanation type might affect CTR in real 
systems, and is an interesting metric since it measures benefit to the system itself (by increased 
usage), not the user. In the past, persuasiveness in film recommender systems has been measured by
simply asking the user how likely they would be to see a film, which was the strategy used here 
[21].

The user study observed a statistically significant difference in the persuasiveness and 
trustworthiness of different explanations. The post-hoc tests further showed that the difference was 
in favour of the association rules explanation. However, there are various possible explanations for 
the measured effect.

Most obviously, the effect can be because users found the explanations useful. Such effect of adding
explainability to recommender systems has been observed before [9][10]. However, there’s no clear 
reason why the effect would be between association rules and influence, and why no effect between 
the influence and baseline conditions was observed. One possibility for this is that the users 
preferred the simpler association rules to the more complex influence explanation, and perhaps 
didn’t fully understand what the influence explanation meant. Association rules also give a stronger 
justification for the recommendation: in it the antecedents directly caused the recommendation, 
while in influence they only influenced it. It’s possible that users preferred this clarity of the 
association rules explanation. The presentation of the two explanations is shown in Figures 13 and 
14, while the presentation of the baseline explainer is shown in Figure 15.
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Figure 13: How the influence explanation is presented to the user in the web interface. The hue of 
the bar shows whether the film’s influence is positive or negative, and its width shows the strength 
of the effect.

Figure 14: How the association rule explanation is presented to the user in the web interface. The 
antecedent(s) is shown left-hand side of the rule, and the consequent is shown on the right.
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Figure 15: How the baseline (i.e. “no explanation”) explanation is presented to the user in the web
interface. The explanation gives no personalised insight into why the film was recommended.

The effect can also arise from the different selection strategy of recommendations between 
association rules and other conditions. Because the explainable recommendations were generated 
from global association rules, they tend to only include popular content, and don’t adjust to the 
user’s individual tastes as well as recommendations in general. However, it is surprising that this 
would result in an increased effect – in general, users ought to prefer recommendations that are 
better-targeted to them. It is possible that the “fake” nature of the research platform affects this – the
popular but less targeted content may represent films the users knew beforehand and can easily tell 
that they want to watch them, but would not watch in a real system. Popular films are also more 
likely to have a poster and description, but this was controlled by filtering out cases without such 
details from the analysis. Because the films with a poster and description received higher ratings for
persuasiveness and trust, it can be concluded that interface design heavily affects these properties as
well (a finding that has been described before [21]).

As concluded in the Evaluation-section for influence calculation, the calculated influences suffer 
from a relatively high variance. This can result in influence values that differ dramatically from the 
“real” underlying influence of rated films. For example, if an user who had rated a Star Wars film 
highly saw a recommendation of a Star Wars film, they’d expect the previous ratings from the 
franchise to have highly influenced the recommendation. If this influence was understated, the user 
might lose trust in the recommender system. As such, the inexact nature of the influence calculation 
may have affected its ratings amongst users.

To conclude, while the study found statistical significance between the explanation methods it’s too 
early to state that association rules is the better way to generate explanations for recommender 
systems. In the future, models with a higher model fidelity should be used so association rules 
explanations can be better compared with other explanation generation methods. Local or cluster 
methods for mining association rules described in previous work could be used to improve model 
fidelity [1], though it’s unclear how they would work for real-time systems. Secondly, explanation 
generation and visualisation should be decoupled as much as possible in further studies. In this 
study, it’s not clear if the effect is caused by the explanation generation algorithm, or the way the 
explanations are visualised to the user. Finally, data should be gathered from a larger and more 
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diverse group of participants, preferably in a real system with real users to make sure the results are 
more representative and generalise better.

In the end, the difference between persuasiveness and trustworthiness should also be highlighted: 
the measured effect in expressed trust was higher, but only slightly. If persuasiveness is a valid 
measure for click-through rate (CTR) of real systems, this predicts that adding explanations could 
have a significant effect on revenue generated by recommender systems. It’s also possible that users
didn’t really consider trustworthiness and persuasiveness as separate metrics, but rather saw them as
a single measure of recommendation quality.

Adding explanations to real systems

Association Rules

The association rules explanation was liked by users, and would therefore make a good candidate as
an explanation to be added to real systems. As opposed to Peake and Wang (2018), the association 
rules here allowed more than one antecedent [1]. This was hypothesised to allow for richer 
association rules to be mined from the dataset, though it’s unclear whether this effect was achieved 
or not. This project also only used global rules – if association rule explanations are to be added to a
real system, the developer needs to decide whether the rules used should be global, or the local or 
cluster-based rules explored by Peake and Wang (2018) [1].

The key advantage for global rules is that the process for mining the rules has to be done once only. 
The apriori algorithm [26] used in mining association rules is computationally expensive, especially
for large datasets, which might cause significant issue in scaling up local- or cluster based 
approaches. This is most evident in live systems such as the web application used in the user study: 
you can’t expect users to wait several hours for their local association rules calculation to finish! 
Peake and Wang identified scalable association rules mining as a key area of future study [1], a 
finding this study affirms.

The biggest problem with using this type of explanation in real systems is model fidelity. As shown 
by the evaluation step, the measured model fidelity was significantly lower than in the previous 
study [1]. This can be due to several reasons: firstly, the MovieLens 20M dataset has more items 
(roughly 27,000) than the Channel 4 dataset (681 in the training set of previous study [1]). Because 
the association rules are mined from co-located items in a transaction (i.e. a single user’s reviews), 
having fewer items is favourable as any two items are be more likely to be co-located in a 
transaction. Datasets with large numbers of items aren’t doomed to fail though, they just need to set 
their threshold of support lower, as well as likely set the threshold of confidence higher to avoid 
including noise. Using local or cluster-based rules could also help, since they were observed to have
a higher model fidelity [1].

If the association rules explainer is treated as a machine learning model itself, then the thresholds of
support and confidence (as well as other parameters for filtering the set of association rules) can be 
seen as its hyper-parameters. While the thresholds were set by hand to the researcher’s best guess, 
they could also be determined through hyper-parameter optimisation. This was out of scope for this 
project, but could be an interesting way to make the association rules step more scientific and allow 
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the method to be more easily applied to more diverse datasets. The cost function for optimising the 
hyper-parameters would need to be chosen carefully though, perhaps by aiming for the highest 
possible model fidelity while punishing small thresholds for confidence and support, or by using a 
version of explainable precision and recall [14].

Influences

While the user study found no statistically significant effect in user-rated trust and persuasiveness 
for adding the influence-based explanations, they still warrant further study. Most importantly, the 
method of presenting the explanation to the users can be optimised further. Even if the influence 
explanations don’t improve the trustworthiness and persuasiveness of the model, they do improve 
transparency. They could also be used for implementing special user interface components: for 
example, an UI element could show top recommendations amongst those that are most influenced 
by a specific item. This could be useful for implementing a more personalised version of the classic 
“This item is similar to the following items...” recommender system, which are often item- based 
neighbourhood models, or content-based models.

The biggest benefit of the influence explanation is its perfect model fidelity, which means that an 
explanation can always be generated. If an explanation should always be added to a 
recommendation, it’s possible that the two explanation types could be used together: association 
rules explanations as the primary method, and influences as the fallback. On the other hand, 
showing that a recommendation can’t be explained can be good for transparency, and in some cases 
for trust as well [21]: by adding a fallback option to association rules, this transparency is lost.

Visualising association rules
Recommender systems based on latent factor models are highly uninterpretable. So far post-hoc 
explanation methods such as association rules have been used in explaining individual 
recommendations. However, since the set of association rules encapsulates the recommender 
system’s behaviour as a whole, it could be used to discover knowledge about the recommender 
system as a whole.

To do that, the recommender system was mapped as a network using the generated association 
rules. Since the rules are of form (X, Z => Y), they can be considered a directed graph where X, Z 
and Y are nodes of the graph. This graph can then be visualised using standard graph visualisation 
techniques. Figure 16 shows a generated graph using the association rules mined from the 
MovieLens 20m dataset. Due to its large size, a clearer image is provided as Appendix 1. Note that 
rules of type (X, Y) => Z are shown in two edges, X => Z and Y => Z.
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Figure 16: The association rules mined from a recommender system visualised as a directed graph.
Each node represents a film, while each edge (arrow) represents a causal relationship in an 
association rule, i.e. A → B.

The visualised graph can potentially be used to answer many questions about the underlying 
recommender system, but the most interesting one is whether the system suffers from the extreme 
content problem, referring to a recommender system that recommends more and more extreme, 
niche items to users who have rated popular, mild items. This problem is of particular interest to 
open video platforms like YouTube, which has been accused of promoting more extreme content to 
viewers of popular, milder “gateway” videos [20]. To analyse the network quantitatively, a proper 
metric for “extremeness” should be defined. Every item could then be assigned an “extremeness” 
score, and parts of the network where extremeness increases one moves closer to the centre of a 
cluster could be identified automatically.

In this case, visual inspection of the network seems to place films such as The Shawshank 
Redemption, The Lord of the Rings: The Two Towers and The Godfather to the centre of the 
network, which seem to be no more extremist than their antecedents. As such, the network suggests 
that the recommender system described here does not suffer from the extreme content problem.

Conclusion
This dissertation has shown two alternative approaches in adding explanations to a recommender 
system, and shown through a study conducted on real users how it can improve the trustworthiness 
and persuasiveness of the recommendations. This effect was found to be statistically significant 
(p=0.008, p=0.001) between the explanation types. An investigation on model fidelity highlighted 
the importance of selecting the right hyper-parameters for the association rule explanation 
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generator, an issue which is considered the biggest roadblock in deploying the explanations to real 
systems.

The dissertation also proposed an approximation of adding a new user into a latent factor model 
without a full re-training, and showed that the method doesn’t lower the precision of the resulting 
top-n recommendations. The approximate training method was found to be thousands of times 
faster than a full re-train, making rapid addition, update and removal of users feasible in live 
systems. Finally, the potential use of association rules in analysing the recommender system as a 
whole was explored through visualising the rules (and by proxy, the recommender system as a 
whole) as a directed graph.

Limitations

The main limitations of the project concern the user study. Out of the 41 participants, only 32 were 
generated recommendations with all types of explanations, thus reducing the number of data points 
available. Furthermore, the users were likely biased to be more European, young and tech-savvy 
than the average person in the world (though due to the anonymity of the participants, this can’t be 
confirmed conclusively). In addition, the “fake” nature of the research platform means that the 
findings, especially those concerning persuasiveness, may not translate to real systems. It’s also 
possible that the findings are somewhat domain-specific and won’t translate to benefits in domains 
outside of movie ratings.

In addition, the abysmal model fidelity in the association rules explainer added a selection bias 
towards popular content when selecting recommendations. This could mean that the observed effect
is caused by the selection of recommendations rather than the explanation. Such an effect would be 
somewhat surprising as the recommender system is supposed to select the best recommendations.

Further study

Based on the results of this report, several areas of further study can be identified. In a future user 
study, an association rules explainer with a significantly higher model fidelity should be compared 
against the “baseline” of no explanation in a user study to show how much of the observed effect 
was due to the explanation, and how much was due to the association rules explainer’s selection 
bias. It would also be interesting to see whether users would prefer explanations generated from 
local or cluster-based association rules over global rules. Local and cluster-based rules were 
reported to have higher model fidelity than global rules [1] and conceptually they focus on 
describing the parts of the recommender system most relevant to the user. As post-hoc explanations 
are model-agnostic, the explanations could also be tested with different types of recommender 
system models, and with different data domains to confirm the assumed robustness of post-hoc 
explanation methods. Further user studies would be preferred to be conducted in real systems with 
as many diverse users as possible to make sure the effect translates to the real world.

As mentioned before, an analytical method for setting the optimal bounds for the confidence and 
support bounds for mining association rules would also be an exciting future area of study. The 
study would need to find a method of measuring the exact benefits and costs of lowering the 
bounds: lower bounds result in a greater model fidelity, but also decrease the quality of the average 
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explanation. The use of association rules in data analysis is highly interesting as well. This report 
identified the extreme content problem as a potential benefactor for mapping the recommender 
system through association rules, but it is believed that the method could be used in other problems 
as well.  The influence explainer could be of interest in modelling temporal effects in recommender 
systems – the influence of the most recently rated items can be seen as a derivative of the ratings in 
the recommender system (i.e. the direction of how the predicted ratings are changing right now) and
could potentially be of interest in improving the prediction of future ratings in the system.
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